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ABSTRACT

Visualization routines for rendering complicated geometries are very useful for engineers and 
scientists who are trying to build 3D prototypes of their designs. A common way to rapidly add 
interesting features to a 3D model is through the use of a concept called Constructive Solid Geometry. 
CSG uses compositions of the boolean set operations to manipulate basic geometric primitives to form
more complicated objects.  The most common boolean operations employed are union, intersection, 
and subtraction. Most computer-aided design software packages contain some sort of ability visualize 
CSG. The typical workflow for the user is as follows: The user specifies the individual primitive 
components, the user arbitrarily combines each of these primitives with boolean operations, the 
software generates a CSG tree structure which normally stores these solids implicitly with their 
defining equation, the tree is traversed and a general algorithm is applied to render the appropriate 
geometry onto the screen. Algorithms for visualizing CSG have been extensively developed for over a 
decade. Points sampled from the implicit solids are typically used as input by variations of algorithms 
like marching cubes and point-cloud surface reconstruction. Here, we explain a surface triangulation 
method from the graphics community that is being used for surface visualization in the framework of 
a Monte-Carlo neutron transport code called Mercury.

INTRODUCTION

The CSG object representation is 
particularly important for users of the Monte-
Carlo neutron transport code called Mercury. It 
allows them to construct complicated geometries
and generate a visual representation of the 
objects to guarantee their validity.  In Mercury, 
users write an input file that includes a CSG 
description of how they want to create a 
geometry for their simulation. Mercury's parser 
passes the main code the necessary information 
for it to construct a CSG tree data structure. This 
tree serves multiple purposes. Primarily, it is 
actually used in the physics simulation for 
detecting where in the 3D environment particles 
exist at a particular point in time and tracking 
them to surfaces.  However, for visualization 
purposes, the tree is used to gather information 
about the final set of objects that should be 
rendered. 

It is worth noting that for this application, 

the primary concern is performing CSG 
operations on concave and convex closed 
surfaces. Traditionally we use surface rather than 
solid to refer to the boundary of these geometric 
bodies. Additionally, mesh is used to refer to an 
approximate polyhedral representation of a given
geometric surface.  Mercury has two general 
approaches for solving the CSG problem. The ray 
tracer is the most natural in a Monte-Carlo 
framework and performs excellently at displaying
the appropriate geometry. However, at this point,
ray tracing suffers from being computationally 
expensive and not realistic for real-time 
visualization on limited hardware.  
Another more interesting approach is mesh 
generation based on the CSG specification. Many 
of Mercury's current mesh generation methods 
for solving the CSG problem involve making 
successive approximations to an implicitly 
defined series of surfaces. These methods are 
accurate, but some leave visual artifacts. These 
arise when the surfaces are “not smooth” or have



local points where they are non-differentiable.
  

PREVIOUS WORK

Ray Tracer

For each pixel, a ray is fired into the scene 
from the viewer's perspective. These rays 
essentially sample objects in the scene to 
determine which object is visible to the viewer. 
The material properties of the chosen sampled 
object are used to determine the final color for 
the pixel and the scene is constructed 
appropriately(Figure 1).
 

Figure 1: A sophisticated implementation of a ray
tracer with many components of the shading 
model used.

The obvious downside to this approach is that 
upon every frame update, the pixel values have 
to be recomputed. Acceleration structures such 
as octrees(Figure 2) can be used to enhance this 
per frame calculation by spatially decomposing 
the scene into geometric regions.

   Figure 2: A visual representation of the octree 
data structure.

This helps to reduce the number ray-intersection 
tests during the ray trace calculation.

Mixed-Cell 

This method begins with specified spatial 
grid to begin defining  the resulting mesh. It uses 
an idea similar to adaptive mesh refinement to 
recursively subdivide grid cells to compute a total
volume fraction. The terminating condition is 
reached when all nodes of a sub-cell lie in the 
same material or the user-specified subdivision 
threshold is reached. The volume fraction of 
these individual cells are passed to Visit which 
performs material interface reconstruction from 
the cell volumes. These are used to generate a 
final mesh(Figure 3).

 Figure 3: A CSG subtraction generated using the 
conformal method with a 100x100x100 grid size.



Numerical Integration

An alternative method for computing 
volume fractions of cells is employed in this 
method. It's a 2D numerical quadrature rule for 
computing the volume fraction of CSG cells in 
graphics mesh cells. The user has the option to 
select various quadrature rules to adjust the 
accuracy. This volumetric information is passed to
Visit which performs the surface reconstruction 
and creates a final mesh.

Conformal Mesh

Space is partitioned into uniform spatial 
cells. For each of the nodal points on the grid, the
point is relocated to the nearest surface to 
“conform” to the CSG cell. This is done similarly 
to how rays are sent into the scene using the ray 
tracing method(Figure 4). When multiple CSG 
surfaces occupy a cell, this method reverts to the 
Mixed-Cell method. 

Figure 4: A CSG subtraction generated using the 
conformal method with a grid size of 
100x100x100.

CONTRIBUTIONS

The more recent additions take a 
dramatically different approach to solving the 
CSG problem. Rather than focusing on defining a 
graphics mesh globally, these methods deal with 
each CSG primitive individually to preserve the 
local behavior of the mesh.

Adaptive Local Convex Subdivision ALCS(“Local 
Catmull-Clark”)

The motivation behind this scheme was to
develop an algorithm that could arbitrarily 
triangulate a given convex body. Traditional 
Catmull-Clark subdivision is a method for 
successively refining a coarse object to obtain a 
much smoother surface(Figure 5).

Figure 5: A depiction of traditional Catmull-Clark 
ran three times to smooth a cube into a sphere.

This image illustrates how Catmull-Clark 
subdivision is a global operation and refines all 
faces equally. For the CSG problem, we needed a 
notion of local refinement and wanted the ability 
to subdivide a series of faces independent of the 
adjacent neighbors. This led to a fundamentally 
different set of data structures for mesh 
representation that made the mesh easy to 
locally traverse and update.  

Collectively, these data structures have 
been referred to as the spoke representation for 
a mesh. 

Spoke

Vertex Index

Next Spoke Index

Twin Spoke Index

Face Index

Spoke Depth

Figure 6:  The spoke data structure.

A spoke can visually be considered as a 
directed edge of a graph or a half-edge for a 
mesh representation(Figure 7). 



Figure 7:  A visual representation of how the 
spoke data structure is being used to 
communicate topology information.

The separation of the mesh data into smaller 
data structures is done in an attempt to contrast 
the geometric from the topological information 
of a mesh.  The connectivity and adjacency 
information is contained within the face list and 
spoke table, while the vertex table contains the 
geometric spatial coordinates of all of the 
vertices. 

Because the goal of this method is to 
obtain the closest approximation to a surface, it 
does not use most of the averaging steps found in
traditional Catmull-Clark subdivision. Instead 
there is a projection step, where upon 
subdivision of a face, the centroid is placed on 
the surface of the actual surface using a ray
trace, and newly added vertices along the edge 
are also projected to the surface in a similar way. 
Each face is stored in a priority queue using the 
index into the face list and the error metric 
associated with that face. Each of the faces is 
locally subdivided until an error threshold is 
met(Figure 8). 
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Figure 8: Description of how the error metric is 
computed for each face.
 

In order to preserve the correct 
topological information of the mesh, careful steps
have to be placed into the algorithm to handle 
the multiple cases that arise upon subdivision of 
an individual face. While subdividing a face, each 
spoke is traversed and an spoke-subdivision 
routine is executed.  The spoke-subdivision 
algorithm has three different possible cases. We 
call a spoke coarse when both its corresponding 
face and its twin spoke's face have the same level
of refinement(Figure 9). Similarly, a fine spoke is 
one where
the neighboring face has undergone one level of 
refinement compared to the current face(Figure 
10). A super-fine spoke is one where the the 
refinement difference between the two adjacent 
faces is greater than one(Figure 11). The general 
algorithm for face subdivision
determines one of these three possible cases and
updates the mesh data structures accordingly. 
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Figure 9: An image of the coarse neighbor case.

Figure 10: An image of the fine neighbor case.

Figure 11: An image of the super-fine neighbor 
case.

BSP tree probing

The intention of this algorithm is to 
combine arbitrary closed triangulated meshes 
given a boolean operation. BSP(Binary Space 
Partitioning) trees offer a very natural way of 

dividing space into smaller domains. Instead of 
being limited by the constraints of a cartesian 
grid, BSP trees allow space to be chopped into 
areas that characterize the local orientation of 
faces on a mesh(Figure 12).

Figure 12: A depiction of how the BSP tree 
partitions space, and how the binary tree 
structure is organized.

 Given an arbitrary non-convex triangulated 
mesh, upon inserting the triangles into a BSP 
tree, particular subtrees correspond to convex 
meshes that are composed to make the original 
non-convex mesh. This allows us to simplify our 
problem of handling the triangulation of non-
convex bodies to one of handling a collection of 
convex bodies(Figure 13).
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A∩B=A inside∪Binside

AND OR
A∪B=Aoutside∪Boutside

SUBTRACT
A−B=Aoutside∪Binside

Aoutside={x : x∈∂ A∧x∉I (B)}

Boutside={x : x∈∂ B∧x∉ I ( A)}

A inside={x : x∈∂ A∧x∈ I (B)}

B inside={x : x∈∂ B∧x∈I ( A)}



Figure 13: A 2D demonstration of how we 
construct the boolean operations using subsets of
the original primitives.

The BSP algorithm begins by traversing 
the CSG tree. Whenever it encounters a convex 
primitive, it executes a triangulation routine on 
the primitive and builds a BSP tree from those 
triangles. The ALCS scheme could be used to 
generate triangulated quads or specific 
triangulation routines for each primitive could be 
implemented. When constructing the BSP tree, 
three separate cases emerge for inserting a 
triangle(Figure 14). 

Figure 14: Enumeration of the cases for tree 
insertion. 

For each node of the tree, a triangle is 
tested to see if it is in front or behind of the 
current triangle corresponding to the 
node(Figure 14). This process is recursively  
performed until a triangle can be inserted in front
or behind another node in the tree. An 
interesting third case emerges when the inserted 
triangle crosses the current node's triangle(Figure
14c). If all of the vertices of the triangle do not lie
on this node's triangle, then we slice the inserted
triangle into three smaller triangles and 
recursively insert them into the BSP tree. If 
exactly one of the inserted triangle's vertices lies 
on the node's triangle, then we instead slice the 
inserted triangle into two triangles and 
recursively add them to the tree. 

Once each tree is constructed, two  
trees are taken at a time if a boolean operation is 
to be applied on the both of them. Each tree uses
a collection of triangles from the other tree to 
perform a probe operation similar to the 
insertion. For all of the triangles, the probe 
operation queries the tree to assemble a set of 
triangles that are inside and outside of the mesh.
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The result is four new sets. From these partitions 
of the mesh into components, we can use set 
unions to construct the desired mesh to 
represent the desired boolean operation.

RESULTS & FUTURE WORK

After applying the BSP probing algorithm 
to two triangulated cylinders, the following 
results were produced. 

Figure 15: CSG operations using BSP method.

With the BSP probing method, one feature worth
noticing is the sharp, crisp edges that are 
preserved from the original geometries. This is a 
desired property of the final CSG. Unlike previous
methods that Mercury has used, the BSP method
preserves these points where locally the 
derivative on the surface is discontinuous. 

The BSP probing method has two 
noteworthy drawbacks currently, however. It only
works on two triangulated primitives currently. 
However, this can easily be extended by 
determining an efficient way to decompose 

chains of boolean expressions into simpler 
expressions involving the inside and outside sets. 
Additionally, after the CSG has been triangulated,
there tend to be several unnecessary triangles as 
a result of the BSP building step in the algorithm. 
On some occasions, the merging of neighboring 
triangles might result in the same looking shaded 
surface. It is beneficial to consider these cases in 
the future and use mesh simplification routines 
to reduce the overall polygon count. 
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